Gyrokinetic Simulations and Measurements of Transport and Density Fluctuations in a JT-60U Plasma with Box-like ITB

IAEA conference on H-mode and Internal Barrier Physics, September 28, 2005 R. Budny (PPPL)

Ackn: R.Bravenec, J.Candy, K. Hill, G. J. Kramer, D. Mikkelsen R.Nazikian, K.Shinohara, H.Takenaga, and R.E.Waltz

- Understanding transport is needed for practical Tokamak Reactors
- ITG / TEM turbulence is thought to cause most transport in present Tokamaks
- The GYRO Gyrokinetic code is thought to contain all the physics needed to understand ITG / TEM turbulence
- This poster tests the validity of GYRO by comparing simulations of transport and density fluctuations with measurements

Outline

- Description of the JT-60U plasma studied
- Transport analysis and GYRO simulations
- Comparisons of simulated and measured transport
 - GYRO energy transport high x2.5 or more (depending on ripple loss)
- ullet Comparisons of simulated and measured $ilde{n}_e$ radial correlation
 - GYRO λ_r during ITB \simeq measurement
- ullet Comparisons of simulated and measured $ilde{n}_e/n_e$
 - GYRO rms(\tilde{n}_e/n_e) high x(2-3)
- Conclusions

Description of JT60-U plasma with box-like ITB

GYRO simulation at 3 times

4.9 s: low power, pre-ITB

6.0 s: ITB's forms

6.2 s: Box-type T_e ITB

Temperature profiles develop ITB's

- ullet early: slightly peaked T_i and broad T_e
- ullet late: T_i ITB and box-like T_e ITB

Density profiles become peaked

ullet n_e and n_i broad early, peaked later

Reversed q_{MHD} profile

ullet GYRO simulations in region of strong gradients and reversed q_{MHD}

Low energy transport coefficients in core

- ullet χ_e drops, χ_i remains low and near $\chi_{neoclassical}$
- ullet Ignored ripple losses that would make χ_e and χ_i even lower

Profiles of energy flow from power-balance

- add conducted and convected energy flow via thermal plasma
- subtract P_{rad} , CX, beam-shine-through (large)
- ignore ripple loss (large?)

GYRO runs

- calculate time evolution of distribution fun'n of each species in 5D
- 2 ion species: 1) bulk hydrogenic, 2) lumped beam and impurity
- ITG/TEM with kinetic electrons ($k_{\theta}\rho_{s}$ < 1.0)
- ullet linear runs to study spectra in $k_{ heta}
 ho_s$
- ullet nonlinear runs to simulate transport and $ilde{n}_e/n_e$
- ullet include effects of E_r and Kelvin-Helmholtz $(v_{||})$ instability
- only electrostatic ($\beta_e = 0$) so far
- massive parallel processing (128-512 processors)

Example of scan in $k_{\theta}\rho_{c}$ from linear run

ullet Unusual to find TEM at low as well as high $k_{\! heta} ho_s$

Saturation of Zonal Flow and higher $n_{toroidal}$ modes

- $n_{toroidal} > 0$ modes drive turbulence
- Zonal flows $(n_{toroidal} = 0)$ damp turbulence
- predator-prey interplay

Example of saturation of energy transport at T = 6.2 s

Species transport also computed

Corrugations in fluctuations at low-order rational surfaces

ullet Example at T=4.9s, $0.34 \le r_{min}/a \le 0.42$

Cumulative energy diffusivities at T = 4.9 s

- Early: dominate mode near $k_{\theta} \rho_s = 0.08$
- Impurity energy flow inward

Cumulative energy diffusivities at T = 6.2 s

• $0.34 \le r_{min}/a \le 0.42$: dominate mode near $k_{\theta}\rho_s$ = 0.4

Energy flow profiles at 6.2 s

- ullet GYRO simulated $q_i+q_e\simeq$ 2-9 MW, depends sensitively on $oldsymbol{
 abla}(T_i)$
- Offset near r_{min}/a = 0.4 due to turbulence spreading?

 \bullet TRANSP power balance \simeq 1.2-3.5 MW

Small radial correlation length for potential fluctuations

$$ullet \lambda_r(\phi)
eq \lambda_r(n_e)$$

Short n_e radial correlation length early, T=4.9s

• GYRO on high-fi eld side: $\lambda \simeq 0.3$ cm, shorter than LFS x2

ullet Reflectometry on high-fi eld side, $r_{min} \leq$ 10 cm: $\lambda_r \simeq$ 20 cm

larger n_e radial correlation length at late times

ullet GYRO: $\lambda_r \simeq 0.5$ cm

ullet Reflectometry at late times: $\lambda_r \simeq 0.4$ cm

Small root-mean-square (\tilde{n}_e/n_e) early, T=4.9s

• GYRO: rms \simeq (0.5-1.0)%

• Reflectometry: high fi eld side rms = (0.2-0.3)%

Larger root-mean-square (\tilde{n}_e/n_e) at late time

• GYRO at late time: rms relatively constant (1.0-1.5)%

• Reflectometry: rms relatively constant (0.3-0.4)%

Additional findings not discussed here

- Part of ongoing nonlinear GYRO simulations of DIII-D, JET, TFTR, and ITER
 - 1. energy, particle, and momentum transport and flows are predicted
 - 2. electron species flow in or out depending on conditions
 - 3. strong sensitivity to drive terms such as $\nabla(T_i)$
 - 4. strong sensitivity to E_r
- see 2005 EPS paper on momentum confi nement in DIII-D and JET ELMy H-mode plasmas

Summary

- Results for JT60-U plasma in steep gradient region:
 - 1. Peak $k_{\theta}\rho_{s}$ near 0.08 at early time, 0.4-0.6 later times
 - 2. GYRO simulated energy flow $(q_i + q_e)$ higher by x2.5 or more than TRANSP power balance
 - 3. Gyro simulated n_e radial $\lambda \simeq$ measured reflectometry
 - 4. GYRO simulated rms(\tilde{n}_e/n_e) higher x2-3 than reflectometry
 - 5. Being higher on flows consistent with being higher on $ilde{n}_e/n_e$

More work needed

- 1. Longer runs and alternative grids to test convergence
- 2. Variations of drive terms to study sensitivity and critical gradients
- 3. Alter GYRO to input separate v_{tor}^{bulk} and v_{tor}^{imp} for increased accuracy of angular momentum transport
- 4. Vary E_r and/or Kelvin-Helmholtz $(v_{||})$ drive for comparison
- 5. Study variation of density fluctuations as $\nabla(n_e)$ varies
- 6. Increase β_e above zero for EM runs

